$pn = n_i^2$	
$n + N_A = p + N_D$	
$\sigma = q(p\mu_p + n\mu_n)$	Semiconductor Conductivity
$\frac{D_n}{\mu_n} = \frac{D_p}{\mu_p} = V_T = \frac{KT}{q}$	Einstein Relationship
$J_n = qn\mu_n E + qD_n \frac{dn}{dx}$	Drift-Diffusion Current Density
$J_p = qp\mu_p E - qD_p \frac{dp}{dx}$	Drift-Diffusion Current Density
$V_o = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$	pn-Junction Built-in Voltage
$W = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) (V_O + V_R)}$	Depletion Layer Width in pn Junction
$I = I_s(e^{\frac{V}{V_T}} - 1)$	i-v Characteristic Equation of a Diode
$r_d = \frac{V_T}{I_D}$ Small Signal Resistance of a Forward Biased Diode	
$V_r = \frac{V_P}{fCR}$ Ripple Voltage of a Half-Wave Rectifier	
$V_r = \frac{V_P}{2fCR}$ Ripple Voltage of a Full-Wave Rectifier	